Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2631: 393-417, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36995680

RESUMO

The generation of genetically engineered (GE) pigs for disease modeling and xenotransplantation has been massively facilitated by the discovery of the CRISPR/Cas9 system. For livestock, genome editing is a powerful tool when used in combination with either somatic cell nuclear transfer (SCNT) or microinjection (MI) into fertilized oocytes. To generate either knockout or knock-in animals using SCNT, genome editing is carried out in vitro. This has the advantage that fully characterized cells are being employed to generate cloned pigs, predetermining their genetic makeups. However, this technique is labor-intensive and, hence, SCNT is better suited for more challenging projects such as the generation of multi-knockout- and knock-in pigs. Alternatively, CRISPR/Cas9 is introduced directly into fertilized zygotes via microinjection to produce knockout pigs more rapidly. Finally, the embryos are each transferred into recipient sows to deliver GE piglets.Both techniques, SCNT and MI, are technically challenging and therefore require skilled expertise, especially when applied for porcine embryos. Here, we present a detailed laboratory protocol for the generation of knockout and knock-in porcine somatic donor cells for SCNT and knockout pigs via microinjection. We describe the state-of-the-art method for isolation, cultivation, and manipulation of porcine somatic cells, which can then be used for SCNT. Moreover, we describe the isolation and maturation of porcine oocytes, their manipulation by microinjection, and the embryo transfer into surrogate sows.


Assuntos
Edição de Genes , Engenharia Genética , Suínos/genética , Animais , Feminino , Engenharia Genética/métodos , Técnicas de Transferência Nuclear , Oócitos , Zigoto , Sistemas CRISPR-Cas , Animais Geneticamente Modificados/genética
2.
J Crohns Colitis ; 17(7): 1128-1138, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-36821422

RESUMO

BACKGROUND AND AIMS: Crohn's disease [CD] is a major subtype of inflammatory bowel diseases [IBD] with increasing incidence and prevalence. Results of studies using available small and large animal models are often poorly translatable to patients, and few CD models show small intestinal pathology. Due to its similarities to humans, the pig has emerged as a highly suitable translational disease model, particularly for testing novel nutritional and technological interventions. Our goal was to develop a physiologically relevant porcine CD model to facilitate translation of findings and interventions towards the clinic. METHODS: We generated pigs bearing a 93-bp deletion of the adenosine-uracil-rich element [ARE] and a constitutive-decay element within the 3' untranslated region of the TNF gene. Comparative analysis of physiological, molecular, histological and microbial characteristics was performed between wild-type, TNFΔARE/+ and TNFΔARE/ΔARE animals. Alterations in the microbiome were compared to the TNFΔARE mouse model and IBD patients. RESULTS: TNF ΔARE pigs recapitulate major characteristics of human CD, including ulcerative transmural ileocolitis, increased abundance of proinflammatory cytokines, immune cell infiltration and dysbiotic microbial communities. 16S rRNA gene amplicon sequencing revealed enrichment in members belonging to Megasphaera, Campylobacter, Desulfovibrio, Alistipes and Lachnoclostridum in faecal or mucosa-associated bacteria compared to wild-type littermates. Principal components analysis clustering with a subset of TNFΔARE/+ mice and human IBD patients suggests microbial similarity based on disease severity. CONCLUSIONS: We demonstrate that the TNFΔARE pig resembles a CD-like ileocolitis pathophenotype recapitulating human disease. The ability to conduct long-term studies and test novel surgical procedures and dietary interventions in a physiologically relevant model will benefit future translational IBD research studies.


Assuntos
Doença de Crohn , Ileíte , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Suínos , RNA Ribossômico 16S/genética , Fator de Necrose Tumoral alfa/genética , Ileíte/etiologia , Doenças Inflamatórias Intestinais/complicações
3.
Virol J ; 20(1): 15, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707837

RESUMO

BACKGROUND: Porcine cytomegalovirus (PCMV) is a porcine roseolovirus (PCMV/PRV) which is widely distributed in pigs. Transmission of PCMV/PRV in preclinical xenotransplantations was shown to significantly reduce the survival time of the pig transplants in non-human primates. PCMV/PRV was also transmitted in the first transplantation of a pig heart into a human patient. To analyze how PCMV/PRV could be introduced into pig breeds, especially considering cloned transgenic pigs, and subsequently spread in breeding facilities, we screened ovaries and derived materials which are used to perform somatic cell nuclear transfer (SCNT). METHODS: DNA was isolated from ovarian tissues, follicular fluids, oocytes with cumulus cells, denuded oocytes and parthenotes. A real-time PCR with PCMV/PRV-specific primers and a probe was performed to detect PCMV/PRV. Furthermore, a Western blot assay using a recombinant fragment of the gB protein of PCMV/PRV was performed to screen for virus-specific antibodies in the follicular fluids. RESULTS: PCMV/PRV was found by real-time PCR in ovarian tissues, in the follicular fluid and in oocytes. In parthenotes the virus could not be detected, most-likely due to the low amount of DNA used. By Western blot assay specific antibodies against PCMV/PRV were found in 19 of 20 analyzed follicular fluids. CONCLUSION: PCMV/PRV was found in ovarian tissues, in the follicular fluids and also in denuded oocytes, indicating that the virus is present in the animals of which the oocytes were taken from. Despite several washing steps of the denuded oocytes, which are subsequently used for microinjection or SCNT, the virus could still be detected. Therefore, the virus could infect oocytes during genetic modifications or stay attached to the surface of the oocytes, potentially infecting SCNT recipient animals.


Assuntos
Citomegalovirus , Roseolovirus , Feminino , Animais , Suínos , Humanos , Transplante Heterólogo , Líquido Folicular , Roseolovirus/genética , Ovário , Primatas , Clonagem Molecular
5.
Reproduction ; 162(1): F1-F10, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33955849

RESUMO

For more than a century, the scientific consensus stated that a nucleus from a terminally differentiated cell would not be able to control the development of offspring. This theory was refuted by the birth of Dolly, the first animal generated by nuclear transfer using an adult somatic cell as a nuclear donor. Following this paradigm shift, a wide variety of animals has been cloned using somatic cell nuclear transfer. Coupled with modern genome engineering technology, somatic cell nuclear transfer has become the method of choice for the generation of genetically modified farm animals. This has opened new opportunities to study the function of genes and has led to the establishment of animal models for a variety of human conditions and diseases or to improve the health of livestock animals.


Assuntos
Animais Geneticamente Modificados/genética , Núcleo Celular/genética , Clonagem de Organismos/veterinária , Embrião de Mamíferos/citologia , Técnicas de Transferência Nuclear/veterinária , Ovinos/genética , Animais , Animais Geneticamente Modificados/crescimento & desenvolvimento , Aniversários e Eventos Especiais , Clonagem de Organismos/métodos , Clonagem de Organismos/tendências , Ovinos/crescimento & desenvolvimento
6.
Oncogene ; 40(10): 1896-1908, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33603167

RESUMO

Recent years have seen an increasing number of genetically engineered pig models of human diseases including cancer. We previously generated pigs with a modified TP53 allele that carries a Cre-removable transcriptional stop signal in intron 1, and an oncogenic mutation TP53R167H (orthologous to human TP53R175H) in exon 5. Pigs with the unrecombined mutant allele (flTP53R167H) develop mainly osteosarcoma but also nephroblastomas and lymphomas. This observation suggested that TP53 gene dysfunction is itself the key initiator of bone tumorigenesis, but raises the question which aspects of the TP53 regulation lead to the development of such a narrow tumour spectrum. Molecular analysis of p53 revealed the presence of two internal TP53 promoters (Pint and P2) equivalent to those found in human. Consequently, both pig and human express TP53 isoforms. Data presented here strongly suggest that P2-driven expression of the mutant R167H-Δ152p53 isoform (equivalent to the human R175H-Δ160p53 isoform) and its circular counterpart circTP53 determine the tumour spectrum and play a critical role in the malignant transformation in flTP53R167H pigs. The detection of Δ152p53 isoform mRNA in serum is indicative of tumorigenesis. Furthermore, we showed a tissue-specific p53-dependent deregulation of the p63 and p73 isoforms in these tumours. This study highlights important species-specific differences in the transcriptional regulation of TP53. Considering the similarities of TP53 regulation between pig and human, these observations provide useful pointers for further investigation into isoform function including the novel circTP53 in both the pig model and human patients.


Assuntos
Carcinogênese/genética , Neoplasias/genética , RNA Circular/genética , Proteína Supressora de Tumor p53/genética , Alelos , Animais , Modelos Animais de Doenças , Éxons/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Íntrons/genética , Neoplasias/patologia , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas/genética , Suínos/genética
7.
Xenotransplantation ; 27(1): e12560, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31591751

RESUMO

BACKGROUND: Cell surface carbohydrate antigens play a major role in the rejection of porcine xenografts. The most important for human recipients are α-1,3 Gal (Galactose-alpha-1,3-galactose) causing hyperacute rejection, also Neu5Gc (N-glycolylneuraminic acid) and Sd(a) blood group antigens both of which are likely to elicit acute vascular rejection given the known human immune status. Porcine cells with knockouts of the three genes responsible, GGTA1, CMAH and B4GALNT2, revealed minimal xenoreactive antibody binding after incubation with human serum. However, human leucocyte antigen (HLA) antibodies cross-reacted with swine leucocyte antigen class I (SLA-I). We previously demonstrated efficient generation of pigs with multiple xeno-transgenes placed at a single genomic locus. Here we wished to assess whether key xenoreactive antigen genes can be simultaneously inactivated and if combination with the multi-transgenic background further reduces antibody deposition and complement activation. METHODS: Multiplex CRISPR/Cas9 gene editing and somatic cell nuclear transfer were used to generate pigs carrying functional knockouts of GGTA1, CMAH, B4GALNT2 and SLA class I. Fibroblasts derived from one- to four-fold knockout animals, and from multi-transgenic cells (human CD46, CD55, CD59, HO1 and A20) with the four-fold knockout were used to examine the effects on human IgG and IgM binding or complement activation in vitro. RESULTS: Pigs were generated carrying four-fold knockouts of important xenoreactive genes. In vitro assays revealed that combination of all four gene knockouts reduced human IgG and IgM binding to porcine kidney cells more effectively than single or double knockouts. The multi-transgenic background combined with GGTA1 knockout alone reduced C3b/c and C4b/c complement activation to such an extent that further knockouts had no significant additional effect. CONCLUSION: We showed that pigs carrying several xenoprotective transgenes and knockouts of xenoreactive antigens can be readily generated and these modifications will have significant effects on xenograft survival.


Assuntos
Galactosiltransferases/genética , Rejeição de Enxerto/imunologia , Transplante de Rim , Oxigenases de Função Mista/genética , N-Acetilgalactosaminiltransferases/genética , Animais , Anticorpos Heterófilos/metabolismo , Sistemas CRISPR-Cas , Células Cultivadas , Proteínas do Sistema Complemento/metabolismo , Antígenos HLA/imunologia , Xenoenxertos/imunologia , Antígenos de Histocompatibilidade Classe I , Humanos , Suínos , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...